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Abstract

Two ex ante identical players compete for a prize of a common, but initially un-

known, value. A designer decides whether and how to disclose an informative signal

of the prize’s value to players and sets the scoring rule. A fully symmetric contest—

with symmetrically disclosed information and a neutral scoring rule—maximizes the

expected total effort. However, a tilting-and-releveling contest may maximize the ex-

pected winner’s effort by distorting the contest in both dimensions to create dual

asymmetry—i.e., by disclosing the signal privately to one player while biasing the scor-

ing rule in favor of the other.
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1 Introduction

The enduring conflict between fairness and efficiency/incentives is reconciled in contest-

like competitive activities that are commonplace in the modern socioeconomic landscape.

These range from college admissions, sporting events, and competitive procurement (Che

and Gale, 2003) to internal labor markets inside firms (Lazear and Rosen, 1981; Green and

Stokey, 1983; Nalebuff and Stiglitz, 1983; Rosen, 1986). The conventional wisdom has long

emphasized the importance of a level playing field as an incentive device to foster competition

(see, e.g., Dixit, 1987). This insight provides a rationale for a diverse array of practices that

aim to correct initial disparities among competitors. For example, in horse racing, favorite

horses are often required to carry extra weight, and governments offer greater support to

small and medium-sized enterprises in public procurement.

Substantial scholarly effort has been dedicated to developing various strategies to narrow

the gap between asymmetric contestants who may have different levels of innate abilities.

The literature typically focuses on discriminatory measures that advantage underdogs or

handicap front-runners to create even races. In reality, however, contest-like competitions

often take place in more complex environments. Many factors beyond the differences in play-

ers’ abilities can influence their incentives. This complexity also creates greater opportunities

for a designer to manipulate the rules of the competition to advance her goals.

For instance, contestants frequently face uncertainty regarding the contest’s nature and

the surrounding environment, such as the prize value. When competing for a promotion,

employees may not fully understand the nuances of the new role—for instance, the scope of

responsibilities, available resources, and implications for their career trajectory. In another

context, contractors competing for government procurement may not know the true costs of

fulfilling the contract. Contestants’ behavior can arguably be influenced by the information

available to them. This environment suggests a potential for strategic information disclosure:

whether to disclose any available information and, if the designer chooses to do so, to whom.

Suppose the contest designer has discretion in two dimensions: (i) employing discrimi-

natory measures to alter contestants’ relative competitiveness and (ii) choosing to disclose

or conceal prize value information among players, either symmetrically or selectively. This

scenario raises numerous questions. Will a level playing field that equalizes players’ relative

competitiveness remain optimal? Is an equal distribution of information always optimal?

How may discriminatory measures interact with the information disclosure scheme—do they

substitute for or complement each other? Prior literature offers limited insights, because it

typically focuses on contest design within a single dimension.

Our paper fills this gap and joins the growing literature on contest design with multiple
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instruments (Halac, Kartik, and Liu, 2017; Ely, Georgiadis, Khorasani, and Rayo, 2023).

Focusing on the joint deployment of discriminatory measures and the information disclosure

scheme, we demonstrate that the optimum could drastically depart from the conventional

wisdom obtained in the context of one-dimensional contest design. In particular, we find that,

when maximizing the expected winner’s effort, the designer may optimally distort the contest

in both dimensions—i.e., the information disclosure and players’ relative competitiveness—to

create ex post asymmetry even if players are ex ante identical.

Snapshot of the Baseline Model To highlight the contrast with the conventional wis-

dom, we consider two ex ante identical players who vie for a prize of a common, but initially

unknown, value, which can be either high or low. The designer can acquire an informative

binary signal about the true prize value. Each player’s effort is converted into a score, and

the higher scorer wins.

The contest rule consists of two elements. First, a disclosure scheme specifies how the

signal is disclosed. It is symmetric if the signal is disclosed to or concealed from both con-

testants, or asymmetric if only one contestant is provided with the signal and thus awarded

an information advantage. For instance, the organizer of a business pitching competition

may brief preferred entrepreneurs more elaborately on the funding opportunities available

to winning projects. Second, a multiplier is imposed on each player’s effort to generate his

score.1 We normalize the multiplier for player 1 to one and that for player 2 to δ > 0,

which is called a scoring bias. The bias can be interpreted as a nominal judging rule, as

well as measures that elevate or discount players’ (perceived) output. For instance, pre-

ferred contenders competing for promotion to a higher rung on the corporate ladder may be

intentionally nurtured by the incumbent CEO and board members.

We mainly consider two design objectives. The first is the usual maximization of expected

total effort (see, e.g., Moldovanu and Sela, 2001; Moldovanu, Sela, and Shi, 2007). For

instance, the government may use R&D challenges to encourage total social investment in

a certain technological area (e.g., clean energy or AI). The second is the maximization of

the expected winner ’s effort (see, e.g., Moldovanu and Sela, 2006; Fu and Wu, 2022). For

instance, in the competition for a corporate leadership role, the human capital gained by the

winner is what will drive the value of the company.

1The multiplicative bid weighting rule is of both theoretical interest and practical relevance. In the “Buy
American Act,” the Federal Acquisition Regulation (FAR) directs the government to inflate foreign bids
by an evaluation factor ranging from 6% to 50%. The evaluation factor works as an unfavorable multiplier
assigned to foreign bids. See FAR Section 25 for more details.

2



Tilting and Releveling: Results and Extensions Absent the uncertainty in prize

value, a fair contest—with δ = 1—is optimal regardless of the design objective. However,

with an uncertain prize value and the discretion of selective disclosure, the optimum may

depart from the conventional wisdom.

A fully symmetric contest still maximizes the expected total effort, which requires sym-

metrically (un)informed players and a neutral scoring bias δ = 1. However, when maximizing

the expected winner’s effort, a tilting-and-releveling contest could emerge in the optimum.

The tilting-and-releveling contest upsets the balance of the contest in both dimensions, which

creates an ex post dual asymmetry between the ex ante identical players. Specifically, the

contest feeds the signal exclusively to one player, while releveling the playing field by biasing

the scoring rule in favor of the other. The two instruments—i.e., the disclosure scheme and

scoring bias—are complementary : Ex post asymmetry never emerges in the optimum if the

designer is restricted to distorting the contest in only one dimension (Remark 1).

A player’s bidding strategy depends on both his expectation of the prize value and the

competition he faces. The signal allows its recipient to update his prize expectation, and

thereby revise his willingness to bid—i.e., the maximum effort he may exert. Imagine that

only one player is awarded the signal. Suppose that a favorable signal is realized, which

elevates the recipient’s prize expectation. However, he may not step up his effort, since

the other player maintains his prior and his bidding strategy is independent of the realized

signal. A biased scoring rule that favors the uninformed player can incentivize the informed

player: The informed player has to bid more aggressively to win and is willing to do so

with a favorable signal. This mechanism could enable an upward shift in the distribution

of the expected winner’s effort. We identify the condition under which a properly crafted

tilting-and-releveling contest prevails in optimum.

Such distortion never improves the expected total effort, which is the sum of the means

of the contestants’ efforts, and thus benefits equally from the contributions of both players.

In contrast, the expected winner’s effort is the modified first-order statistic of the (random)

efforts contributed by the two players, and only the winner’s input matters.2

We extend our models to further explore the fundamentals of our analysis. First, we

show that tilting-and-releveling contests may well emerge in the optimum when players are

ex ante asymmetric (Section 3.3.1). The logic laid out above remains intact and governs the

designer’s choice of which player—the stronger or the weaker—to be an awarded information

advantage or a more favorable scoring bias. Second, we take into account the designer’s

ability to credibly commit to her disclosure policy (Section 3.3.2). Namely, she may deviate

2In our context, the expected winner’s effort is not necessarily the highest effort, except in the case of
δ = 1. We thus call the expected winner’s effort a modified first-order statistic to reflect the nuance.
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from the announced disclosure scheme when she finds it profitable, and we examine contest

design with a credibility constraint. Third, we let the designer maximize the expected

maximum effort, which departs from the expected winner’s effort under a biased scoring rule

(Section 3.3.2). In Section 4, we generalize the model to allow for a general value distribution

with multiple value states. We explore information design (along with design of the scoring

biases) in this setting that endogenizes the designer’s information structure and the form of

her signal. Our main insights remain qualitatively robust.

Related Literature Our model is a variant of the family of all-pay auctions with interde-

pendent valuations, which include Krishna and Morgan (1997); Lizzeri and Persico (2000);

Siegel (2014); Rentschler and Turocy (2016); Lu and Parreiras (2017); and Chi, Murto, and

Välimäki (2019). This study is primarily linked to two strands of the literature on con-

test design: (i) optimal biases (as the identity-dependent differential treatment of players)

and (ii) information disclosure. To the best of our knowledge, we are the first to allow the

designer to choose the optimal combination of the two instruments.

The literature on optimal biases has conventionally espoused the merits of a level playing

field for incentive provision—e.g., Epstein, Mealem, and Nitzan (2011); Franke, Kanzow,

Leininger, and Schwartz (2013, 2014); Franke, Leininger, and Wasser (2018). A handful of

recent studies—e.g., Drugov and Ryvkin (2017); Fu and Wu (2020); Barbieri and Serena

(2022); Wasser and Zhang (2023); Echenique and Li (2024)—identify the contexts in which

optimal biases further upset the balance of the playing field.

The literature has increasingly recognized information disclosure as a valuable addition

to the toolkit for contest design. For example, Yildirim (2005); Aoyagi (2010); Ederer (2010);

Goltsman and Mukherjee (2011); Halac, Kartik, and Liu (2017); Lemus and Marshall (2021);

and Ely, Georgiadis, Khorasani, and Rayo (2023) examine information feedback in dynamic

contests. Halac et al. (2017) and Ely et al. (2023) consider the combination of feedback

scheme and prize allocation rule and focus on symmetric information disclosure. Further,

the prize is allocated by outcome and cannot depend on a player’s identity. In contrast, we

consider a static setting and focus on the interaction between the scoring rule and disclosure

scheme; we allow for selective disclosure and identity-dependent preferential treatment.

Our paper is closely related to studies of disclosing information on contestants’ types, in-

cluding Wärneryd (2012); Lu, Ma, and Wang (2018), Serena (2022); Zhang and Zhou (2016);

Chen and Chen (2024); Melo-Ponce (2021); and Antsygina and Teteryatnikova (2023). These

studies focus exclusively on disclosure schemes and portray strategic information disclosure

as a device that balances competition, which aligns with the conventional wisdom of leveling

the playing field. In contrast, we show that a designer may prefer information asymmetry
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when she controls both the disclosure scheme and scoring rule.

In the context of private-value auctions, Bergemann and Pesendorfer (2007) consider a

joint design problem that allows the seller to control bidders’ learning accuracy and subse-

quent allocation rule. They demonstrate the optimality of creating informational asymmetry

together with an asymmetric follow-up design.

The rest of the paper proceeds as follows. Section 2 sets up the baseline model. Section 3

characterizes the optimal contest and presents further discussions and extensions. Section 4

deals with the case of general value distribution and endogenous information structure.

Section 5 concludes. Analytical details and proofs are collected in the Appendices.

2 Baseline Model

Two risk-neutral players, indexed by i ∈ {1, 2}, compete for a prize of a common value

v ∈ {vH , vL}, with vH > vL > 0.3 The high value vH is realized with a probability Pr(v =

vH) =: µ ∈ (0, 1), with the low value vL to be realized with the complementary probability.

Players are initially uninformed about v, but its distribution is common knowledge. They

simultaneously exert effort xi ≥ 0 to win the prize. One’s effort incurs a constant marginal

cost ci > 0. For the moment, we assume that players are ex ante identical with c1 = c2 = c.4

Winner-selection Mechanism and Scoring Bias The contest designer imposes a scor-

ing bias δi > 0 on each player i’s effort entry xi, which generates his score δixi. We normalize

δ1 to 1 and set δ2 = δ > 0. We call the scoring rule with δ = 1 the neutral scoring rule,

which awards favoritism to neither player. The scoring rule is biased when δ deviates from

1, which favors player 2 if δ > 1 and player 1 if δ < 1.

A player wins if his score exceeds that of the opponent. The winner is picked randomly in

the event of a tie. For given effort entries x := (x1, x2) ∈ R2
+, player 1’s winning probability

is

p1(x1, x2) =


1, if x1 > δx2,

1
2
, if x1 = δx2,

0, if x1 < δx2,

and player 2 wins with the complementary probability.

3We relax the assumption of binary value states and allow for an arbitrary discrete value distribution in
Section 4.

4We examine the case of asymmetric players in Section 3.3.1.
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Disclosure Schemes The designer conducts an investigation and obtains a verifiable noisy

signal s ∈ {H,L} regarding the prize value v. The signal is drawn as follows:

Pr
(
s = H

∣∣ v = vH

)
= Pr

(
s = L

∣∣ v = vL

)
= q, (1)

where q ∈
(

1
2
, 1
]

indicates the precision of the signal.5 It is perfectly informative with q = 1

and is completely uninformative with q = 1/2.

The designer precommits to her disclosure scheme—i.e., how the signal will be disclosed.

The disclosure scheme can formally be described by γ ∈ {CC,CD,DC,DD}, where C

and D indicate “concealment” and “disclosure,” respectively. With a symmetric disclosure

scheme γ = CC(DD), the realized signal s is conveyed to neither (both) of the players.

With γ = CD, the designer conceals the signal from player 1 while disclosing it to player 2;

γ = DC is similarly defined.

Contest Design Prior to the contest, the designer chooses a contest scheme (γ, δ) to

maximize either (i) the expected total effort, denoted by TE(γ, δ; c), or (ii) the expected

winner’s effort, denoted by WE(γ, δ; c).6 The majority of the contest literature focuses on

the former, which resembles revenue maximization in the auction literature. The latter,

however, is relevant in a broad array of competitive activities and has attracted increasing

attention in recent studies.7

The following notation is presented to pave the way for subsequent discussion. Let

v̄ := µvH + (1 − µ)vL denote the ex ante expected prize value. Upon receiving a signal

s = H, a player’s expected prize value is updated to

v̂H(q) :=
µqvH + (1− µ)(1− q)vL
µq + (1− µ)(1− q)

.

Similarly, the posterior upon receiving s = L is

v̂L(q) :=
µ(1− q)vH + (1− µ)qvL
µ(1− q) + (1− µ)q

.

5We endogenize the information structure using a Bayesian persuasion approach à la Kamenica and
Gentzkow (2011) in Section 4.

6By maximizing the expected winner’s effort, we assume the designer is committed to adopting the
winning product in the context of R&D contests. If the designer lacks commitment power, she will be
tempted to adopt the best product regardless of whether the contestant submitting the best product wins
the contest prize. For these contests, the designer’s objective is to maximize expected maximum effort. We
will consider this alternative design objective in Section 3.3.3.

7See, e.g., Moldovanu and Sela (2006); Barbieri and Serena (2024); Fu and Wu (2022); and Wasser and
Zhang, 2023).
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A signal s = H is realized with an ex ante probability µ̂(q) := µq + (1− µ)(1− q).

3 Main Results, Discussions, and Extensions

In this section, we first characterize the equilibrium of the all-pay auction under an

arbitrary disclosure scheme and scoring bias. The result allows us to derive the optimal

contest. We then discuss our results and present extensions to our baseline model.

3.1 Equilibrium Characterization

An all-pay auction with complete information or a discrete signal structure, in general,

does not possess pure-strategy equilibria (see, e.g., Hillman and Riley, 1989; Baye, Kovenock,

and De Vries, 1996; Siegel, 2009, 2010, 2014). Siegel (2014) provides a technique for con-

structing the unique mixed-strategy equilibrium of an all-pay auction under a neutral scoring

rule, i.e., δ = 1. We apply his technique in our context to characterize the equilibrium in

the interim bidding stage under each (γ, δ) with an arbitrary scoring bias δ > 0.

We describe by a function bis(x; γ, δ) the equilibrium bidding strategy of a player i of

type s; i.e., when receiving a signal s ∈ {H,L}: bis(0; γ, δ, q) gives the probability that

player i chooses zero effort—i.e., x = 0—and stays inactive, while bis(x; γ, δ, q) provides the

probability density of exerting an effort x > 0. We omit the subscript s if player i ∈ {1, 2} is

not granted access to the signal, so his equilibrium bidding strategy is given by bi(x; γ, δ).

It can be shown that in equilibrium, a player’s bidding strategy upon observing s (or

nothing) consists of a probability of bidding 0 and at most two adjacent uniform bidding

intervals. Specifically, the equilibrium bidding function can be represented as follows.

bis(x; γ, δ) =



dis0 (γ, δ), if x = 0,

disa (γ, δ), if 0 < (δ1{i=1} + 1{i=2})`a(γ, δ),

disb (γ, δ), if (δ1{i=1} + 1{i=2})`a(γ, δ) < x ≤ (δ1{i=1} + 1{i=2})`b(γ, δ),

0, otherwise.

Table 1 shows the values of dis0 (γ, δ), disa (γ, δ), disb (γ, δ), `a(γ, δ), and `b(γ, δ) for the cases of

γ = DD and γ = DC. The equilibrium for the γ = CC case can be obtained by replacing

v̂s(q) with v̄ ≡ µvH + (1− µ)vL in the case with γ = DD, and the case with γ = CD is the

mirror image of that with γ = DC.

We discuss the properties of the equilibrium in Section 3.2 after presenting the optimal

contest. The equilibrium characterization enables the calculation of expected total effort
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is dis0 (γ, δ) disa (γ, δ) disb (γ, δ) `a(γ, δ) `b(γ, δ)

γ = DD, δ < 1

1s, s ∈ {H,L} 0 c
δv̂s(q)

0 v̂s(q)
c

v̂s(q)
c2s, s ∈ {H,L} 1− δ δc

v̂s(q)
0

γ = DD, δ ≥ 1

1s, s ∈ {H,L} 1− 1
δ

c
δv̂s(q)

0 v̂s(q)
δc

v̂s(q)
δc2s, s ∈ {H,L} 0 δc

v̂s(q)
0

γ = DC, δ < 1

1L 0 c
δ[1−µ̂(q)]v̂L(q)

0
[1−µ̂(q)]v̂L(q)

c
v̄
c1H 0 0 c

δµ̂(q)v̂H(q)

2 1− δ δc
v̂L(q)

δc
v̂H(q)

γ = DC, 1 ≤ δ ≤ 1
µ̂(q)

1L 1
1−µ̂(q)

(
1− 1

δ

)
c

δ[1−µ̂(q)]v̂L(q)
0 [

1− µ̂(q)δ
] v̂L(q)

δc
v̂L(q)
δc

+ µ̂(q)
c

[v̂H(q)− v̂L(q)]1H 0 0 c
δµ̂(q)v̂H(q)

2 0 δc
v̂L(q)

δc
v̂H(q)

γ = DC, δ > 1
µ̂(q)

1L 1 0 0
v̂H(q)
δc

v̂H(q)
δc

1H 1− 1
δµ̂(q)

c
δµ̂(q)v̂H(q)

0

2 0 δc
v̂H(q)

0

Table 1: Equilibrium Bidding Strategies.

TE(γ, δ; c) and the expected winner’s effort WE(γ, δ; c). We present the results in Table 2,

with functions W1(·), W2(·), and W3(·) to be defined as follows:

W1(u, z, d; c) : = −
(
u3z + 1

)
d2c+

{
u2z(6− u) + 5

}
dc,

W2(u, z, d; c) : =
−d3u2z

[
u(1 + d)− 6

]
+ 5d− 1

d2
c,

W3(d; c) : =
5d− 1

d2
c.

The case with γ = CD is omitted, since a contest scheme (CD, 1/δ) is outcome equivalent

to (DC, δ) with symmetric players. The results in Table 2 pave the way for our analysis of

the optimal contest design.

It is noteworthy that for a given scoring bias δ > 0, symmetric disclosure schemes—

γ = CC and DD—generate the same ex ante equilibrium outcome—i.e., TE(CC, δ; c) =
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TE(γ, δ; c) WE(γ, δ; c)

γ = DD or CC, δ < 1 δv̄
c

δv̄(5−δ)
6c

γ = DD or CC, δ ≥ 1 v̄
δc

v̄(5δ−1)
6cδ2

γ = DC, δ < 1
δ(v̂L(q)+µ̂(q)2v̂H(q)−µ̂(q)2v̂L(q))

c
v̂L(q)
6c2
W1

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δ; c

)
γ = DC, 1 ≤ δ ≤ 1

µ̂(q)
1
c

[ v̂L(q)
δ

+ δµ̂(q)2(v̂H(q)− v̂L(q))
] v̂L(q)

6c2
W2

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δ; c

)
γ = DC, δ > 1

µ̂(q)
v̂H(q)
δc

v̂H(q)
6c2
W3

(
δ; c
)

Table 2: Expected Total Effort and the Expected Winner’s Effort in Equilibrium.

TE(DD, δ; c) and WE(CC, δ; c) = WE(DD, δ; c).

3.2 Optimal Contest

The solutions of equilibrium expected total effort and the expected winner’s effort enable

analysis of the optimum.

Proposition 1 (Optimal Contest) Fix q ∈ (1/2, 1] and suppose c1 = c2 = c > 0. The

following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, 1)

and (γ∗TE, δ
∗
TE) = (DD, 1) are optimal.

(ii) If the designer aims to maximize the expected winner’s effort, then in the case with

µ̂(q)v̂H(q) > 4v̂L(q), both (γ∗WE, δ
∗
WE) =

(
CD, µ̂(q)

)
and (γ∗WE, δ

∗
WE) =

(
DC, 1/µ̂(q)

)
are optimal; in the case with µ̂(q)v̂H(q) ≤ 4v̂L(q), both (γ∗WE, δ

∗
WE) = (CC, 1) and

(γ∗WE, δ
∗
WE) = (DD, 1) are optimal.

Proposition 1(i) is intuitive and echoes the conventional wisdom of the contest literature.

The contest maintains symmetry with a neutral scoring rule δ = 1, as well as symmet-

ric disclosure—i.e., γ ∈ {CC,DD}. However, Proposition 1(ii) shows that to maximize

the expected winner’s effort, the designer may deliberately create ex post dual asymmetry

between players: She tilts the playing field by awarding an information advantage to one

player, while releveling the playing field by biasing the scoring rule in favor of the other.

A tilting-and-releveling contest,
(
CD, µ̂(q)

)
or
(
DC, 1/µ̂(q)

)
, is optimal when the condition

µ̂(q)v̂H(q) > 4v̂L(q) is met.

To interpret the result, it is useful to first understand the bidding equilibrium under

symmetric disclosure vis-à-vis that under asymmetric disclosure, which is summarized in

Figure 1.
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(a) δ = 1. (b) δ > 1.

Figure 1: Equilibrium Strategies with Symmetric Players: γ = DD.

Equilibrium under Symmetric Disclosure The equilibrium under a symmetric disclo-

sure scheme with discrete signal spaces resembles that in a standard complete-information

all-pay auction. With δ = 1, a player’s effort is uniformly distributed over the interval

[0, v̂s(q)/c] under DD, where v̂s(q) is the updated expected prize value upon receiving a

signal s ∈ {H,L}. Analogously, one’s effort under CC is uniformly distributed over [0, v̄/c].

A symmetric contest, (DD, 1) or (CC, 1), fully extracts the players’ surplus and maximizes

expected total effort.

Suppose instead that a biased scoring rule is in place, e.g., δ > 1. Player 2 secures a sure

win by bidding v̂s(q)/(δc) under DD (or v̄/(δc) under CC), which leaves him with positive

surplus. The handicapped player 1 continues to bid up to v̂s(q)/c under DD (or v̄/c under

CC), but he now stays inactive—i.e., exerting zero effort—with a positive probability. The

biased scoring rule is obviously suboptimal. We illustrate this rationale in Figure 1 for the

case of γ = DD.

Equilibrium under Asymmetric Disclosure Asymmetric disclosure fundamentally changes

the nature of the equilibrium. Assuming γ = DC and δ = 1, we illustrate players’ equilib-

rium bidding strategies in Figure 2(a). Player 1 is informed, and his equilibrium bidding

strategy is signal-dependent. Player 1, upon receiving signal L, is referred to as player 1L;

his efforts are uniformly distributed on
[
0, [1− µ̂(q)]v̂L(q)/c

]
, while those of player 1H are

distributed on
[
[1− µ̂(q)]v̂L(q)/c, v̄/c

]
(see Table 1). Player 2’s efforts are distributed over

the interval
[
0, v̄/c

]
.8

Player 1L—due to his lower updated expected prize valuation—is effectively an underdog

when competing with the uninformed player 2. The distribution of his efforts includes zero,

which implies a zero equilibrium payoff for him. In contrast, player 1H has a higher expected

8The bidding supports of players 1L and 1H are disjoint and separated by the cutoff [1− µ̂(q)]v̂L(q)/c.
The distribution of x2, however, has different densities for efforts above and below the cutoff. This occurs
because in this common-value all-pay auction, the uninformed player 2 takes into account and strategically
responds to player 1’s type-dependent bidding strategy when placing his bid.
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(a) δ = 1. (b) 1 < δ < 1/µ̂(q).

(c) δ = 1/µ̂(q).

Figure 2: Equilibrium Strategies with Symmetric Players: γ = DC.

prize valuation and becomes a favorite vis-à-vis player 2. The upper support of his efforts

remains at v̄/c, although he can bid up to v̂H(q)/c. He has no incentive to bid more than

v̄/c because player 2’s effort is capped at that level.

The contest (DC, 1) is obviously suboptimal. This naturally prompts the question of

how player 1H can be further incentivized to bid more than v̄/c, which inspires tilting and

releveling.

Tilting and Releveling Raising δ above 1 incentivizes player 1H. We illustrate this

rationale in Figure 2(b). A scoring bias δ > 1 favors player 2 and discourages player 1L.

In contrast, although player 1H continues to enjoy the upper hand for δ in the range of[
1, 1/µ̂(q)

]
, effort v̄/c no longer guarantees a sure win. Thus the unfavorable scoring rule

compels him to step up his effort: The upper support of his effort increases with δ.

Tilting and releveling “gives up” the low-type informed player 1, but could benefit from

his better-incentivized high-type counterpart, since the latter may bid more than v̄/c. This is

obviously suboptimal for total-effort maximization, but suggests a potential for elevating the

expected winner’s effort, in which case only the winner’s effort (i.e., the modified first-order

statistic) matters. The details are discussed below.

Tilting and Releveling as an Optimal Contest By Proposition 1(ii), with γ = DC,

a bias δ = 1/µ̂(q) could maximize the expected winner’s effort. Recall that contests under
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symmetric disclosure, either DD or CC, generate the same ex ante equilibrium outcomes for

a given δ. We compare the tilting-and-releveling contest
(
DC, 1/µ̂(q)

)
with a fully symmetric

contest (CC, 1) to elucidate the underlying trade-off.

Under (CC, 1), players maintain their prior, so their efforts are uniformly distributed

over [0, v̄/c]. Players’ equilibrium strategies in the contest
(
DC, 1/µ̂(q)

)
are illustrated in

Figure 2(c). Imagine first that a low signal s = L is realized. The negative shock, together

with the unfavorable scoring rule, forces player 1L to give up—i.e., with his bidding strategy

degenerating to a singleton at zero—which clearly causes a loss compared with the case of

(CC, 1). However, player 2 remains uninformed and is immune to the negative shock; he

remains active, which provides insurance for the performance of the contest. Then suppose

s = H. Player 1—because of the upwardly revised prize expectation and the unfavorable

scoring rule—may bid more than v̄/c, with the upper support reaching v̂H(q)/c. The contest,

when maximizing the expected winner’s effort, could outperform (CC, 1).

The trade-off between
(
DC, 1/µ̂(q)

)
and

(
CC, 1

)
ultimately depends on µ̂(q), v̂H(q), and

v̂L(q). First, tilting and releveling could yield a gain when a high signal is realized, which

occurs with a probability of µ̂(q). Therefore, the former is more likely to prevail with a large

µ̂(q). Second, the gain of the tilting-and-releveling contest is more significant when the signal

prompts substantial upward revision in prize valuation—i.e., from v̄ to v̂H(q)—which requires

a larger v̂H(q) relative to v̂L(q). Summing these leads to the condition µ̂(q)v̂H(q) > 4v̂L(q)

for the optimality of
(
DC, 1/µ̂(q)

)
. The scoring bias δ = 1/µ̂(q) relevels the contest under

γ = DC and enables players 1H and 2 to win with an equal probability with s = H; it also

perfectly eliminates the rent afforded to player 1 by his information advantage.

Tilting and releveling may well emerge as the optimum with asymmetric players, which

we discuss in Section 3.3.1. The same rationale applies and also determines whom—the

stronger or the weaker player—should respectively be awarded the information advantage

and favoritism in terms of scoring bias.

Complementarity Between Information Disclosure and Scoring Bias The two

instruments, information disclosure and scoring bias, play complementary roles. That is,

the optimum either requires full symmetry or embraces dual asymmetry. Suppose that the

designer is allowed to distort the contest in only dimension, either by setting the disclosure

scheme while maintaining a neutral scoring rule or biasing the scoring rule while being

constrained by symmetric disclosure. The following ensues.

Remark 1 (Unidimensional Contest Design) Fix q ∈ (1/2, 1] and suppose c1 = c2 =

c > 0. The following statements hold.

12



(i) Fix δ = 1. A symmetric disclosure scheme—i.e., γ ∈ {CC,DD}—maximizes both

expected total effort and the expected winner’s effort simultaneously.

(ii) Fix γ ∈ {CC,DD}. The neutral scoring bias—i.e., δ = 1—maximizes both expected

total effort and the expected winner’s effort simultaneously.

With δ = 1, an asymmetric disclosure scheme cannot force the high-type player 1 to

raise his maximum effort above v̄/c, as Figure 2(a) illustrates. Similarly, with a symmetric

disclosure scheme, biasing the scoring rule only allows the favored player to slack off, as

Figure 1(b) shows. Asymmetry in only one dimension is always suboptimal.

3.3 Discussions and Extensions

In this part, we consider three extensions that shed further light on the principles of

optimal contest design that combines the tools of scoring rule and disclosure policy.

3.3.1 Asymmetric Players

We first consider the case of asymmetric players. Equilibrium characterization for this

case is provided in Appendix A. Without loss of generality, we assume c1 > c2, so player 2

is the stronger player. The following ensues.

Proposition 2 (Optimal Contest with Asymmetric Players) Fix q ∈ (1/2, 1]. The

following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, c2/c1)

and (γ∗TE, δ
∗
TE) = (DD, c2/c1) are optimal.

(ii) If the designer aims to maximize the expected winner’s effort, then in the case with

µ̂(q)v̂H(q) >
(

2 c2
c1

+ 2
)
v̂L(q), the optimal scheme is (γ∗WE, δ

∗
WE) =

(
DC, c2

µ̂(q)c1

)
; in the

case with µ̂(q)v̂H(q) ≤
(

2 c2
c1

+ 2
)
v̂L(q), both (γ∗WE, δ

∗
WE) = (CC, c2/c1) and (γ∗WE, δ

∗
WE) =

(DD, c2/c1) are optimal.

Proposition 2(i), again, affirms the conventional wisdom of leveling the playing field. In

this case, a “fair” bias δ = c2/c1 is required to fully offset the ex ante asymmetry in terms

of bidding efficiency. A symmetric disclosure scheme, together with the fair bias, leads to an

ex post fully symmetric contest, which fully extracts players’ surplus.

Proposition 2(ii) states that a tilting-and-releveling contest
(
DC, c2/[µ̂(q)c1]

)
could be

optimal when the designer’s objective is to maximize the expected winner’s effort. The un-

derdog, player 1, is provided with an information advantage. The bias δ = c2/[µ̂(q)c1] relevels

13



the competition between players 1H and 2—as 1/µ̂(q) does in the symmetric case—and en-

tirely discourages player 1L. The same trade-off looms large for the designer, as in the case

with symmetric players. Notably, the releveling bias c2/[µ̂(q)c1] could remain literally biased

against player 2—i.e., c2/[µ̂(q)c1] < 1—if players are excessively heterogeneous. However, it

is more favorable to the uninformed player 2 relative to the “fair” bias c2/c1 that perfectly

offsets player 1’s information advantage—i.e., c2/[µ̂(q)c1] > c2/c1.

To understand why the weaker player 1 receives an information advantage, recall that

in a tilting-and-releveling contest (i) the low-type informed player is fully discouraged—

which incurs a loss—and (ii) the uninformed player stays active regardless—which provides

insurance. First, giving up the weaker player minimizes the loss, since in any case player 1’s

higher marginal cost limits the potential of his contribution. Second, keeping the stronger

player 2 active maximizes the insurance.

This rationale is further illustrated by the optimal condition µ̂(q)v̂H(q) > [2(c2/c1) +

2]v̂L(q). The tilting-and-releveling contest is more likely to prevail when players are more

asymmetric (i.e., with a smaller c2/c1): The loss incurred when s = L is less significant

because the forgone effort of player 1L is limited by his relatively higher cost, while the

insurance provided by player 2 is large due to his more significant bidding competence.

3.3.2 Credibility of Disclosure Policies

The baseline model assumes that the designer can commit to her announced disclosure

policy and abstracts away the issue of credibility (Akbarpour and Li, 2020; Lin and Liu,

2024): The commitment power can be called into question, since the designer may find it

profitable to deviate from her precommitted prescriptions. We now consider the possibility

of deviation. To the best of our knowledge, we are the first to examine the issue of credibility

in the contest literature.

Fix a disclosure scheme γ ∈ {CC,CD,DC,DD} and let γ(i) indicate the specific dis-

closure to a player i ∈ {1, 2} under γ. For example, γ(1) = C and γ(2) = D for γ = CD.

Consider a disclosure scheme γ announced by the designer and a potential deviation γ′ 6= γ.

Assume that player i can detect the deviation if and only if γ(i) 6= γ′(i). For example,

the player detects deviation if he unexpectedly learned about the signal from the designer

with γ(i) = C, or was denied access to it with γ(i) = D. He maintains his belief about

the disclosure to his opponent regardless, since he cannot detect deviation in that respect.

Suppose that the designer deviates from her disclosure to one player i, i.e., γ(i) 6= γ′(i).

Player i—upon detecting the deviation—would have an incentive to complain if he becomes

worse off by adopting a bidding strategy that best responds to his opponent’s equilibrium

strategy under the announced contest scheme (γ, δ); the contest dissolves when a complaint
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arises. The player remains silent otherwise and the contest proceeds.

A credible contest is formally defined as follows.

Definition 1 (Credible Contest) A contest (γ, δ) is credible if for every deviation of

disclosure policy γ′ 6= γ, either (i) at least one player who detects it complains, or (ii) every

player who detects it remains silent but such a deviation reduces the designer’s expected

payoff.9

In short, a credible contest prevents profitable deviation, which imposes an additional

constraint on our joint design problem. The optimal contest that satisfies this requirement

is established as follows.

Proposition 3 (Optimal Credible Contest) Fix q ∈ (1/2, 1] and suppose c1 = c2 = c >

0. The following statements hold.

(i) If the designer aims to maximize expected total effort, then (γ∗TE, δ
∗
TE) = (DD, 1) is

an optimal credible contest. (γ∗TE, δ
∗
TE) = (CC, 1) is also an optimal credible contest if

and only if µ̂(q) ≤ 1/2.

(ii) If the designer aims to maximize the expected winner’s effort, then

(a) in the case with µ̂(q) ≤ 5/7 and µ̂(q)v̂H(q) > 4v̂L(q), both (γ∗WE, δ
∗
WE) =

(
CD, µ̂(q)

)
and (γ∗WE, δ

∗
WE) =

(
DC, 1/µ̂(q)

)
are optimal credible contests;

(b) in the case with µ̂(q) > 5/7 and {13µ̂(q)− 18[µ̂(q)]2}v̂H(q)/{2[1− µ̂(q)]} > v̂L(q),

both (γ∗WE, δ
∗
WE) =

(
CD, 5 − 6µ̂(q)

)
and (γ∗WE, δ

∗
WE) =

(
DC, 1/[5 − 6µ̂(q)]

)
are

optimal credible contests;

(c) in all other cases, (γ∗WE, δ
∗
WE) = (DD, 1) is an optimal credible contest; so is

(γ∗WE, δ
∗
WE) = (CC, 1) if and only if µ̂(q) ≤ 1/3.

By Proposition 3(i), (γ∗TE, δ
∗
TE) = (DD, 1) remains optimal for total effort maximization.

The disclosure policy DD is credible: Any deviation can be detected by at least one player;

simple analysis can verify that one will complain if he suffers from a loss of information.

9Our approach to credible information disclosure is reminiscent of the setup of Lin and Liu (2024) to
model credible persuasion, which assumes that a sender’s deviation will be detected if it alters the message
distribution. Their notion of credibility rules out detectable deviations and requires that a sender not profit
from an undetectable deviation. They focus on a sender-receiver problem in which the message is publicly
observed, while we consider a game-theoretic environment that allows for private disclosure. Notably, we
allow for detectable deviations, provided that they do not reduce the player’s payoff—i.e., the player would
not file a complaint.
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However, the ex ante equivalence of symmetric disclosure schemes CC and DD no longer

holds. Suppose that the designer announces CC while disclosing his signal privately to one

player. The player would bid v̄ := µvH + (1−µ)vL to secure a win if s = H—which benefits

the designer—and bid zero if s = L. This deviation benefits the designer if the probability

of realizing a high signal is large; the privately informed player also benefits, so he would not

complain. These render the announced policy non-credible. As a result, by Proposition 3(i),

with δ = 1, γ = CC is credible if and only if a high signal is less likely, i.e., µ̂(q) ≤ 1/2.

By Proposition 3(ii), to maximize the expected winner’s effort, a tilting-and-releveling

contest can still prevail. However, the credibility requirement may be a binding constraint.

Recall by Proposition 1 that absent credibility concerns, a tilting-and-releveling contest with

(γ∗WE, δ
∗
WE) =

(
CD, µ̂(q)

)
or (γ∗WE, δ

∗
WE) =

(
DC, 1/µ̂(q)

)
is optimal for µ̂(q)v̂H(q) > 4v̂L(q).

By Proposition 3(ii), its optimality can be preserved for µ̂(q) ≤ 5/7, but dissolves when the

probability of a high signal µ̂(q) is high.

To satisfy the credibility requirement, the scoring rule for a tilting-and-releveling contest

has to favor the uninformed player further: The uninformed player would be excessively

privileged if the designer deviates and awards him the signal, in which case the designer

would be worse off.10 This altered tilting-and-releveling contest emerges in the optimum in

case (b) of Proposition 3(ii). Alternatively, the designer can simply feed the signal to both

players and resort to a neutral scoring rule, in which case a fully symmetric contest (DD, 1)

arises, as in case (c) of Proposition 3(ii).

3.3.3 Expected Maximum Effort

With a scoring bias δ 6= 1, the winner of the contest may not be the one who contributes

the highest effort. Maximizing the expected winner’s effort presumes that the designer

benefits only from the winning entry, which is plausible when the designer cannot separate

the prize allocation from the adoption of contestants’ output—e.g., admissions contests at

universities or competitions for promotions within firms. In some contexts, the designer

may award the prize based on her preferred rules, yet choose to use a higher-quality entry

from another contestant; for instance, Netflix did not adopt the algorithm submitted by the

winner of its Netflix Prize.11 We now allow the designer to maximize the expected maximum

effort of the contest, denoted by ME(γ, δ; c).

A general analysis is challenging. However, together with numerical exercises, we can

verify that the optimal contest is either a symmetric contest (CC, 1) or a tilting-and-releveling

contest (CD, µ̂(q)), or equivalently, (DC, 1/µ̂(q)). Comparing (CC, 1) with (CD, µ̂(q)) leads

10It is straightforward to verify 1/[5− 6µ̂(q)] > 1/µ̂(q) for µ̂(q) > 5/7.
11See tinyurl.com/37kdtz74.
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to the following.

Proposition 4 (Optimal Expected-maximum-effort-maximizing Contests) Fix q ∈
(1/2, 1] and suppose c1 = c2 = c > 0. Consider two contests (CC, 1) and

(
CD, µ̂(q)

)
. The

former generates a higher expected maximum effort than the latter if and only if

v̂L(q)

v̂H(q)
>
µ̂(q)

[
2− µ̂(q)

]
4

.

Proposition 4 thus establishes the sufficient and necessary condition for an optimal tilting-

and-releveling contest.

4 General Value Distribution and Endogenous Infor-

mation Structure for Disclosure

In this section, we extend the model to allow for multiple value states and let the designer

flexibly design the information structure of her investigation. Specifically, suppose that the

common value for the prize v is distributed on the set {v1, v2, . . . , vK} with K ≥ 2 and

µk := Pr(v = vk) > 0 for k ∈ {1, 2, . . . , K}. Without loss of generality, assume that

0 < v1 < v2 < · · · < vK . Again, we denote by v̄ the ex ante expected prize value. The

designer has full control over the amount of information to be revealed and the form of

the signal disclosed to players. This corresponds to the concept of Bayesian persuasion

(Kamenica and Gentzkow, 2011). An information structure comprises a signal space S and

a collection of likelihood distributions π(·|v) over S.12 The designer sets S and
(
γ, δ, π(·|v)

)
.13

A fully symmetric contest, (CC, 1) or (DD, 1), fully dissipates the rent, thereby maximiz-

ing total effort. We thus focus on the maximization of the expected winner’s effort. Fixing

γ ∈ {CC,DD}, as in the baseline case, it is straightforward to verify that δ = 1 maximizes

the expected winner’s effort, which equals 2
3
v̄. For the case of γ = DC, the following lemma

establishes the optimality of binary signal spaces, which simplifies the joint design problem.

Lemma 1 (Optimality of Binary Signals) Fix γ = DC and δ > 0. An information

structure with binary signals—i.e., S = {H,L}—maximizes the expected winner’s effort.

12For example, the information structure described in Section 2 involves a binary signal space S =
{H,L} and a conditional likelihood distribution corresponding to each underlying state—i.e., vH or vL—
parameterized by q [see Equation (1)].

13It is noteworthy that this remains a limited information design exercise. Addressing a fully general
information design problem in our context is technically demanding, because potential correlation between
signals would significantly complicate the analysis of common-value all-pay auctions.

17



In principle, the optimal information structure may require up to K signals if the value

state space is K-dimensional (see, e.g., Arieli, Babichenko, Smorodinsky, and Yamashita,

2023). Lemma 1 states that two signals suffice within our context (see Appendix C for

more details). Specifically, we show in the proof that holding γ = DC and δ > 0 fixed,

for any information structure with a signal space that contains three or more elements, we

can construct an alternative information structure with one fewer signal to attain a weakly

higher expected winner’s effort. This allows us to restrict attention to binary signal spaces,

which significantly reduces the dimensionality of the information design problem and enables

a closed-form characterization of the optimum.

Given a binary signal space S = {H,L}, denote by vπs the expected prize value conditional

on s, i.e., E(v|s). Without loss of generality, assume that a realization of s = H gives rise

to a higher expected prize value, i.e., vπH ≥ vπL. In addition, define µπ := Pr(s = H).

In our context, designing the information structure π(·|v) with S = {H,L} is equivalent

to choosing a distribution of posterior expectations, (vπH , v
π
L, µ

π), subject to the constraint

that the distribution can be induced by a binary signal structure. Denote the cumulative

distribution functions of v and vπ by F (x) and G(x), respectively. It is well known in the

literature that we can find a binary signal structure that generates (vπH , v
π
L, µ

π) if and only

if the following conditions are satisfied (see, e.g., Gentzkow and Kamenica, 2016; Kolotilin,

2018). ∫ t

0

F (x)dx ≥
∫ t

0

G(x)dx for v1 ≤ t ≤ vK , and (2)

µπvπH + (1− µπ)vπL = v̄. (3)

The following proposition fully characterizes the optimal contest.

Proposition 5 (Optimal Contest with Multiple Value States and an Endogenous

Information Structure) Suppose c1 = c2 = c > 0. Consider the joint design of scoring

bias δ > 0, disclosure scheme γ, and information structure π(·|v). If the designer aims to

maximize the expected winner’s effort, the following holds.

(i) In the case with v̄/v1 > 4, the optimal contest consists of (γ∗WE, δ
∗
WE) =

(
DC, 1/µπ

)
,
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or equivalently,
(
CD, µπ

)
, with

µπ = min


K∑

`=k∗

µ`, µ
∗(k∗)

 ,

vπH =
[µπ − Pr(v > vk∗)]vk∗ + Pr(v > vk∗)E[v|v > vk∗ ]

µπ
, and

vπL =
[1− µπ − Pr(v ≤ vk∗)]vk∗ + Pr(v ≤ vk∗)E[v|v ≤ vk∗ ]

1− µπ
,

where µ∗(k) := 3−
∑k
`=1 µ`

2
−

∑K
`=k+1 µ`v`

2vk
, and k∗ := min

{
k : µ∗(k) ≥

∑K
`=k+1 µ`

}
. This

distribution of posterior expectations is achieved by a signal structure with π(H|v) =

0 for v < vk∗, π(H|v) = µπ−Pr(v>vk∗ )
µk∗

for v = vk∗, and π(H|v) = 1 for v > vk∗.

(ii) In the case with v̄/v1 ≤ 4, both (γ∗WE, δ
∗
WE) = (CC, 1) and (γ∗WE, δ

∗
WE) = (DD, 1), with

an arbitrary information structure π(·|v), are optimal.

The implications of our baseline model remain intact. The designer may, again, tilt and

relevel to maximize the expected winner’s effort, provided that the condition v̄/v1 > 4 is

met. The optimal information structure takes a simple form: There exists a threshold value

state vk∗ such that the designer sends a low signal if v < vk∗ and a high signal if v > vk∗ .

For v = vk∗ , the designer may randomize between the two signals.

5 Concluding Remarks

This paper studies the optimal design of a contest in which two players compete for a

common-valued prize. The designer chooses a combination of two instruments: an informa-

tion disclosure scheme and a scoring bias. Fully symmetric contests—symmetrically disclosed

information and a neutral scoring rule—maximize expected total effort, which embraces the

conventional wisdom of leveling the playing field. However, when maximizing the expected

winner’s effort, the contest may feature dual asymmetry that distorts the contest in both

dimensions: The designer discloses the signal privately to one player, while a favorable scor-

ing rule compensates the other. Such tilting-and-releveling contests could prevail even if the

players are ex ante identical.

Our paper is one of the first in the contest literature to examine the optimal combi-

nation of multiple design instruments. We demonstrate the complementarity between the

instruments, in that the optimum requires either ex post full symmetry or dual asymmetry.
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Our results generate novel implications for contest design and shed fresh light on the debate

regarding the relationship between (a)symmetry and the performance of a contest.

For future research, it would be promising to revisit our research question within the con-

text of all-pay auction models in more general settings, such as those that involve nonlinear

cost functions or multiple players. Also, the information design exercise could be expanded

by allowing for correlated signals. Although these extensions are technically challenging,

they clearly merit further exploration.
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Appendix A Equilibrium Analysis

In this appendix, we first characterize the equilibrium with (possibly) asymmetric players

under an arbitrary contest scheme (γ, δ), with γ ∈ {CC,CD,DC,DD} and δ > 0. We then

calculate the resulting expected total effort and the expected winner’s effort. Our analysis is

adapted from Siegel (2014), who provides the technique for the case with a neutral scoring

rule δ = 1; here we allow for a scoring bias.

We describe by a function bis(x; γ, δ) the equilibrium bidding strategy of a player i of

type s, i.e., when receiving a signal s ∈ {H,L}: bis(0; γ, δ, q) gives the probability that

player i chooses zero effort—i.e., x = 0—and stays inactive, while bis(x; γ, δ, q) provides the

probability density of exerting an effort x > 0. We omit the subscript s if player i ∈ {1, 2} is

not granted access to the signal s, so his equilibrium bidding strategy is given by bi(x; γ, δ).

A.1 Equilibrium Results

We first characterize the equilibrium under a symmetric information disclosure scheme,

i.e., γ ∈ {CC,DD}, in which case neither player possesses information favoritism.

Proposition A1 (Equilibrium Characterization under Symmetric Disclosure)

Under γ = DD, the contest game generates a unique equilibrium, which can be characterized

as follows:

(i) If δ < c2
c1

, then

b1s(x;DD, δ) =

 c2
δv̂s(q)

, if 0 < x ≤ δv̂s(q)
c2

,

0, otherwise,

b2s(x;DD, δ) =


1− δc1

c2
, if x = 0,

δc1
v̂s(q)

, if 0 < x ≤ v̂s(q)
c2
,

0, otherwise.

(ii) If δ ≥ c2
c1

, then

b1s(x;DD, δ) =


1− c2

δc1
, if x = 0,

c2
δv̂s(q)

, if 0 < x ≤ v̂s(q)
c1
,

0, otherwise,

b2s(x;DD, δ) =

 δc1
v̂s(q)

, if 0 < x ≤ v̂s(q)
δc1

,

0, otherwise.
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(iii) The equilibrium bidding strategy under γ = CC, denoted by bi(x;CC, δ), can be ob-

tained by replacing v̂s(q) with v̄ ≡ µvH + (1− µ)vL in bis(x;DD, δ).

Next, we consider the equilibrium under each asymmetric disclosure scheme, i.e., γ = CD

or DC, in which case one player receives the signal privately.

Proposition A2 (Equilibrium Characterization under Asymmetric Disclosure)

Under γ = DC, the contest game generates a unique equilibrium, which can be characterized

as follows:

(i) If δ < c2
c1

, then

b1L(x;DC, δ) =

 c2
δ[1−µ̂(q)]v̂L(q)

, if 0 < x ≤ δ[1−µ̂(q)]v̂L(q)
c2

,

0, otherwise,

b1H(x;DC, δ) =

 c2
δµ̂(q)v̂H(q)

, if δ[1−µ̂(q)]v̂L(q)
c2

< x ≤ δv̄
c2
,

0, otherwise,

b2(x;DC, δ) =



1− δc1
c2
, if x = 0,

δc1
v̂L(q)

, if 0 < x ≤ [1−µ̂(q)]v̂L(q)
c2

,

δc1
v̂H(q)

, if [1−µ̂(q)]v̂L(q)
c2

< x ≤ v̄
c2
,

0, otherwise.

(ii) If c2
c1
≤ δ ≤ c2

µ̂(q)c1
, then

b1L(x;DC, δ) =


1

1−µ̂(q)

(
1− c2

δc1

)
, if x = 0,

c2
δ[1−µ̂(q)]v̂L(q)

, if 0 < x ≤
[
1− µ̂(q) δc1

c2

]
v̂L(q)
c1

,

0, otherwise,

b1H(x;DC, δ) =


c2

δµ̂(q)v̂H(q)
, if

[
1− µ̂(q) δc1

c2

]
v̂L(q)
c1

< x ≤ v̂L(q)
c1

+ δµ̂(q)[v̂H(q)−v̂L(q)]
c2

,

0, otherwise,

b2(x;DC, δ) =


δc1
v̂L(q)

, if 0 < x ≤
[
1− µ̂(q) δc1

c2

]
v̂L(q)
δc1

,

δc1
v̂H(q)

, if
[
1− µ̂(q) δc1

c2

]
v̂L(q)
δc1

< x ≤ v̂L(q)
δc1

+ µ̂(q)[v̂H(q)−v̂L(q)]
c2

,

0, otherwise.
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(iii) If δ > c2
µ̂(q)c1

, then

b1L(x;DC, δ) =

1, if x = 0,

0, otherwise,

b1H(x;DC, δ) =


1− c2

δc1µ̂(q)
, if x = 0,

c2
δµ̂(q)v̂H(q)

, if 0 < x ≤ v̂H(q)
c1

,

0, otherwise,

b2(x;DC, δ) =

 δc1
v̂H(q)

, if 0 < x ≤ v̂H(q)
δc1

,

0, otherwise.

The equilibrium under (CD, δ) can be obtained similarly.

A.2 Expected Total Effort and the Expected Winner’s Effort

Propositions A1 and A2 lead to the following.

Lemma A1 (Expected Total Effort under Different Contest Schemes) Fixing a

contest scheme (δ, γ) and a profile of marginal effort costs (c1, c2), the contest generates an

equilibrium expected total effort

TE(CC, δ; c1, c2) = TE(DD, δ; c1, c2) =


δv̄(c1+c2)

2c22
, if δ < c2

c1
,

v̄(c1+c2)

2δc21
, if δ ≥ c2

c1

for symmetric disclosure schemes. Under asymmetric disclosure schemes, the equilibrium

expected total effort of the contest can be obtained as

TE(DC, δ; c1, c2) = TE(CD, 1/δ; c2, c1)

=


δ(c1+c2)(v̂L(q)+µ̂(q)2v̂H(q)−µ̂(q)2v̂L(q))

2c22
, if δ < c2

c1
,

c1+c2
2c1c2

[
c2
δc1
v̂L(q) + δc1

c2
µ̂(q)2(v̂H(q)− v̂L(q))

]
, if c2

c1
≤ δ ≤ c2

µ̂(q)c1
,

(c1+c2)v̂H(q)

2δc21
, if δ > c2

µ̂(q)c1
.

Further, we derive the equilibrium expected winner’s efforts. The following ensues.

Lemma A2 (Expected Winner’s Effort under Different Contest Schemes) Fixing

a contest scheme (δ, γ) and a profile of marginal effort costs (c1, c2), the equilibrium expected
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winner’s effort from the contest game is

WE(CC, δ; c1, c2) = WE(DD, δ; c1, c2) =


δv̄(2c1+3c2−c1δ)

6c22
, if δ < c2

c1
,

v̄(3c1δ−c2+2c2δ)
6c12δ2

, if δ ≥ c2
c1
,

and

WE(DC, δ; c1, c2) =


v̂L(q)
6c1c2
W1

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δc1
c2

; c1, c2

)
, if δ < c2

c1
,

v̂L(q)
6c1c2
W2

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δc1
c2

; c1, c2

)
, if c2

c1
≤ δ ≤ c2

µ̂(q)c1
,

v̂H(q)
6c1c2
W3

(
δc1
c2

; c1, c2

)
, if δ > c2

µ̂(q)c1
,

where W1(·, ·, ·), W2(·, ·, ·), and W3(·) are defined as follows:

W1(u, z, d; c1, c2) : = −c2

(
u3z + 1

)
d2 +

{
u2z

[
3(c1 + c2)− c1u

]
+ 2c1 + 3c2

}
d,

W2(u, z, d; c1, c2) : =
d3
(
−u2

)
z
[
u(c1 + c2d)− 3(c1 + c2)

]
+ 3c1d− c1 + 2c2d

d2
,

W3(d; c1, c2) : =
c1(3d− 1) + 2c2d

d2
.

Moreover, we have that WE(CD, δ; c1, c2) = WE(DC, 1/δ; c2, c1).

Lemmas A1 and A2 pave the way for our analysis of the optimal contest design.

A.3 Proofs of Propositions A1 and A2 and Lemmas A1 and A2

Proof. It can be verified that the strategy profiles provided in Propositions A1 and A2

constitute an equilibrium under γ ∈ {CC,DD} and γ ∈ {DC,CD}, respectively. The

equilibrium uniqueness in Proposition A1 follows from Hillman and Riley (1989) and Baye,

Kovenock, and De Vries (1996), and that in Proposition A2 follows from Siegel (2014). Lem-

mas A1 and A2 follow immediately from the equilibrium characterizations in Propositions A1

and A2.
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Appendix B Proofs

Proofs of Tables 1 and 2

Proof. See Appendix A.

Proof of Proposition 1

Proof. See the proof of Proposition 2.

Proof of Proposition 2

Proof. We first prove part (i) of the proposition. From Table 2, it is straightforward to

verify that δ = c2
c1

maximizes TE(CC, δ; c1, c2) and TE(DD, δ; c1, c2), and the maximum

expected total effort is (c1+c2)v̄
2c1c2

. Similarly, from Table 2, it can be verified that either δ = c2
c1

or δ = c2
µ̂(q)c1

maximizes TE(DC, δ; c1, c2). Moreover, we have that

TE

(
DC,

c2

c1

; c1, c2

)
=

(c1 + c2)
{
µ̂2(q)v̂H(q) +

[
1− µ̂2(q)

]
v̂L(q)

}
2c1c2

<
(c1 + c2)

{
µ̂(q)v̂H(q) +

[
1− µ̂(q)

]
v̂L(q)

}
2c1c2

=
(c1 + c2)v̄

2c1c2

= TE

(
CC,

c2

c1

; c1, c2

)
,

and

TE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
=

(c1 + c2)µ̂(q)v̂H(q)

2c1c2

<
(c1 + c2)

{
µ̂(q)v̂H(q) +

[
1− µ̂(q)

]
v̂L(q)

}
2c1c2

=
(c1 + c2)v̄

2c1c2

= TE

(
CC,

c2

c1

; c1, c2

)
.

Therefore, choosing γ ∈ {CC,DD} with δ = c2
c1

generates strictly more expected total effort

to the designer than choosing γ = DC with any δ > 0. Recall that TE(DC, δ; c1, c2) =

TE(CD, 1/δ; c2, c1). This immediately implies that choosing γ ∈ {CC,DD} with δ = c2
c1

generates strictly more expected total effort for the designer than choosing γ = CD with

any δ > 0.

Next, we prove part (ii). It is useful to prove an intermediate result.

Lemma A3 Fix q ∈ (1/2, 1]. WE(DC, δ; c1, c2) is maximized at δ = c2
c1

or δ = c2
µ̂(q)c1

.
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Proof. Fix u ∈ (0, 1) and z ∈ R++. First, for d ∈ (0, 1), we have that

∂W1(u, z, d; c1, c2)

∂d
= u2z

[
(3− u)c1 + (3− 2u)c2

]
+ (2c1 + c2) + 2

(
c2u

3z + c2

)
(1− d) > 0.

Therefore, W1(u, z, d; c1, c2) is increasing in d for d ∈ (0, 1).

Next, we show thatW2(u, z, d; c1, c2), with d ∈ [1, 1/µ], is maximized at d = 1 or d = 1/u.

Simple algebra would verify that

∂W2(u, z, d; c1, c2)

∂d
=

[
zu2W4(u, d; c1, c2)− 1

]
(3c1d+ 2c2d− 2c1)

d3
,

where W4(u, d; c1, c2) := 3(c1+c2)−u(c1+2c2d)
3c1d+2c2d−2c1

d3. Note that

∂W4(u, d; c1, c2)

∂d
=

6d2W5(u, d; c1, c2)[
c1(3d− 2) + 2c2d

]2 ,
whereW5(u, d; c1, c2) := −c2u(3c1+2c2)d2+

[
c2

1(3− u) + c1c2(2u+ 5) + 2c2
2

]
d+c1

[
c1u− 3(c1 + c2)

]
.

Note that W5(u, d; c1, c2) is concave in d, which implies that

W5(u, d; c1, c2) ≥ min
{
W5(u, 1; c1, c2),W5(u, 1/u; c1, c2)

}
, for d ∈ [1, 1/µ];

together with W5(u, 1; c1, c2) = 2c2(c1 + c2) − c2u(c1 + 2c2) > 0 and W5(u, 1/u; c1, c2) =
c1(c1(3−u)(1−u)+c2(2−u))

u
> 0, we can conclude thatW5(u, d; c1, c2) > 0. As a result, ∂W4(u,d;c1,c2)

∂d
>

0 and thus W4(u, d; c1, c2) is increasing in d for d ∈ [1, 1/u], which in turn implies that

∂W2(u, z, d; c1, c2)

∂d
≷ 0⇔ zu2W4(u, d; c1, c2) ≷ 1.

Therefore, W2(u, z, d; c1, c2) is either monotonic or U-shaped in d ∈ [1, 1/u]. This implies

that W2(u, z, d; c1, c2) is maximized at d = 1 or d = 1/u.

Finally, for d > 1, we have that

∂W3(d; c1, c2)

∂d
= −3c1d− 2c1 + 2c2d

d3
< 0,

which implies that W3(d; c1, c2) is decreasing in d for d > 1.

In summary, (i) W1(u, z, d; c1, c2) is increasing in d for d ∈ (0, 1); (ii) W2(u, z, d; c1, c2)

is maximized at d = 1 or d = 1/u; and (iii) W3(d; c1, c2) is decreasing in d for d > 1. All

together, these facts imply that WE(DC, δ; c1, c2) is maximized at δ = c2
c1

or δ = c2
µ̂(q)c1

,

which concludes the proof.
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For γ ∈ {CC,DD}, we have that

∂WE(CC, δ; c1, c2)

∂δ
=
∂WE(DD, δ; c1, c2)

∂δ
=


(3c2−2c1δ+2c1)v̄

6c22
> 0, if δ < c2

c1
;

− (3c1δ−2c2+2c2δ)v̄

6c21δ
3 < 0, if δ ≥ c2

c1
.

Therefore, WE(CC, δ; c1, c2) and WE(DD, δ; c1, c2) are both maximized at δ = c2
c1

. The

maximum expected winner’s effort is (c1+c2)v̄
3c1c2

.

Further, fixing q ∈ (1/2, 1], it follows from Lemma A3 that WE(DC, δ; c1, c2) is maxi-

mized at δ = c2
c1

or δ = c2
µ̂(q)c1

. Carrying out the algebra, we can obtain that

WE

(
DC,

c2

c1

; c1, c2

)
=

(c1 + c2)
{

2v̄ −
[
2− µ̂(q)

] [
1− µ̂(q)

]
µ̂(q)

[
v̂H(q)− v̂L(q)

]}
6c1c2

<
(c1 + c2)v̄

3c1c2

= WE

(
CC,

c2

c1

; c1, c2

)
,

and

WE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
=
µ̂(q)v̂H(q)

{
2c2 + c1

[
3− µ̂(q)

]}
6c1c2

.

Further, recall that WE(CD, δ; c1, c2) = WE(DC, 1/δ; c2, c1); together with the above

analysis, we can conclude that WE(CD, δ; c1, c2) is maximized at δ = c2
c1

or δ = µ̂(q)c2
c1

.

Moreover, we have that

WE

(
CD,

c2

c1

; c1, c2

)
= WE

(
DC,

c1

c2

; c2, c1

)
= WE

(
DC,

c2

c1

; c1, c2

)
< WE

(
CC,

c2

c1

; c1, c2

)
,

and

WE

(
CD,

µ̂(q)c2

c1

; c1, c2

)
=
µ̂(q)v̂H(q)

{
2c1 + c2

[
3− µ̂(q)

]}
6c1c2

<
µ̂(q)v̂H(q)

{
2c2 + c1

[
3− µ̂(q)

]}
6c1c2

= WE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
,

where the strict inequality follows from c1 ≥ c2 and 3− µ̂(q) > 2. As a result, γ = CD would

not arise in the optimum.

In summary, fixing q ∈ (1/2, 1], the expected winner’s effort from the contest is maximized

by either (γ, δ) =
(
CC or DD, c2

c1

)
or (γ, δ) =

(
DC, c2

µ̂(q)c1

)
. Carrying out the algebra, we
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have that

WE

(
CC,

c2

c1

; c1, c2

)
−WE

(
DC,

c2

µ̂(q)c1

; c1, c2

)
=

[
1− µ̂(q)

]
×
[
2(c1 + c2)v̂L(q)− c1µ̂(q)v̂H(q)

]
6c1c2

.

It can be verified thatWE
(
CC, c2

c1
; c1, c2

)
> WE

(
DC, c2

µ̂(q)c1
; c1, c2

)
is equivalent to µ̂(q)v̂H(q) <(

2 c2
c1

+ 2
)
v̂L(q), which concludes the proof.

Proof of Proposition 3

Proof. To proceed, we derive how the designer’s deviation in disclosure policy changes a

players’ bidding strategy. Due to symmetry, it is without loss to focus on player 2. Further,

when γ(2) = D, either player 2 cannot detect and react to the designer’s deviation, or

he would complain for sure due to loss of information, rendering the deviation infeasible.

Therefore, it suffices to consider the case in which γ(2) = C.

Let b̄1s(γ, δ) denote player 1’s highest equilibrium bid under (γ, δ) and the signal real-

ization s for γ ∈ {DC,DD}. Similarly, let b̄1(γ, δ) denote player 1’s highest equilibrium bid

under (γ, δ) for γ ∈ {CC,CD}. The following result ensues.

Lemma A4 (Player’s Bidding Strategy upon Detecting Designer’s Deviation)

Fix an announced policy (γ, δ) and the designer’s deviation γ′ 6= γ. Player 2’s bidding

strategy is described as follows.

(i) If γ = CC and γ′ ∈ {CD,DD}, player 2 bids 0 when receiving a low signal and bids

b̄1(CC, δ)/δ when receiving a high signal.

(ii) If γ = CC and γ′ = DC, player 2 follows his equilibrium bidding strategy under (γ, δ)

since he is not aware of the deviation.

(iii) If γ = DC and γ′ = DD, player 2 bids b̄1s(DC, δ)/δ when receiving signal s ∈ {L,H}
and wins the contest with certainty.

Proof of Lemma A4

Proof. It is straightforward to verify that the strategies described in the lemma are player 2’s

best responses to player 1’s equilibrium bidding strategy under (γ, δ) following the designer’s

deviations.

For the proof, we assume c = 1 without loss of generality. Part (i) follows immediately

from Lemma A4 and it remains to prove part (ii).

For part (ii), first note that the contest (γ, δ) = (DD, 1) is credible. Therefore, in the case

in which (DD, 1) or (CC, 1) is optimal absent credibility concern—i.e., when µ̂(q)v̂H(q) ≤
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4v̂L(q)—(DD, 1) is still optimal in the presence of credibility concern. Further, note that

WE(CC, 1) = WE(DD, 1). As long as (γ, δ) = (DD, 1) emerges as an optimal credible

contest, (CC, 1) is also optimal, provided that it is credible. By Lemma A4, we can verify

that (CC, 1) is credible if and only if µ̂(q) ≤ 1/3.

It remains to consider the case in which µ̂(q)v̂H(q) > 4v̂L(q), or equivalently, WE(DC, 1/[µ̂(q)]) >

WE(DD, 1). By Lemma A4, fixing δ, the designer’s deviation from DC to DD generates

the following expected winner’s effort:

WE(DC → DD, δ) :=


[1− µ̂(q)]v̂L(q) + [µ̂(q)]2v̂H(q), if δ < 1,

1−µ̂(q)δ
δ

v̂L(q) + [µ̂(q)]2v̂H(q), if 1 ≤ δ ≤ 1
µ̂(q)

,

µ̂(q)v̂H(q)
δ

, if δ > 1
µ̂(q)

.

Fixing δ = 1/[µ̂(q)], simple algebra would verify that WE(DC → DD, δ) ≤ WE(DC, δ)

if and only if µ̂(q) ≤ 5/7. Therefore, the optimal credible contest is (DC, 1/[µ̂(q)]) or

(CD, µ̂(q)) if µ̂(q) ≤ 5/7.

We now turn to the case of µ̂(q) > 5/7. Carrying out the algebra, we can show that

WE(DC → DD, δ) > WE(DC, δ) for all δ ≤ 1/[µ̂(q)]. Put differently, any contest (DC, δ)

with δ ≤ 1/[µ̂(q)] is not credible. For δ > 1/[µ̂(q)], it holds that

WE(DC, δ)−WE(DC → DD, δ) =
[5− 6µ̂(q)]δ − 1

6δ2
v̂H(q).

Suppose µ̂(q) > 5/6. It can be verified that WE(DC, δ)−WE(DC → DD, δ) < 0 and thus

(DC, δ) is not credible for all δ > 1/[µ̂(q)], from which we can conclude that (DD, 1) is the

optimal credible contest.

Next, suppose 5/7 < µ̂(q) ≤ 5/6. It follows from the above equation that (DC, δ) is

credible if and only if δ ≥ 1/[5−6µ̂(q)]. Recall from the proof of Lemma A3 that WE(DC, δ)

decreases with δ for δ > 1/[µ̂(q)]. Further, 1/[5−6µ̂(q)] > 1/[µ̂(q)] for µ̂(q) > 5/7. Therefore,

δ = 1/[5 − 6µ̂(q)] maximizes the expected winner’s effort among all credible contests with

γ = DC. Moreover, simple algebra would verify that WE(DC, 1/[5−6µ̂(q)]) > WE(DD, 1)

is equivalent to
13µ̂(q)− 18[µ̂(q)]2

2[1− µ̂(q)]
>
v̂L(q)

v̂H(q)
.

Therefore, both (γ∗WE, δ
∗
WE) =

(
CD, 5 − 6µ̂(q)

)
and (γ∗WE, δ

∗
WE) =

(
DC, 1/[5 − 6µ̂(q)]

)
are

an optimal credible contest scheme if the above inequality holds and (DD, 1) is optimal

otherwise.

Proof of Proposition 4

Proof. For the proof, we assume c = 1 without loss of generality. From the equilibrium
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characterization results, we can obtain the following:

ME(CC, 1) =
2

3
v̄, and ME

(
CD, µ̂(q)

)
=

{
3 + 3[1− µ̂(q)] + [µ̂(q)]2

}
µ̂(q)v̂H(q)

6
.

It can be verified that ME(CC, 1) > ME
(
CD, µ̂(q)

)
is equivalent to

v̂L(q)

v̂H(q)
>
µ̂(q)

[
2− µ̂(q)

]
4

,

which concludes the proof.

Proof of Lemma 1

Proof. See Appendix C.

Proof of Proposition 5

Proof. For the proof, we assume c = 1 without loss of generality. It is useful to prove an

intermediate result.

Lemma A5 Suppose that γ = DC. Fix an arbitrary tuple (vπH , v
π
L, µ

π) that satisfies (3) and

let the designer set the scoring bias δ > 0. Then the expected winner’s effort from the contest

is maximized at δ = 1 or δ = 1
µπ

.

Proof. The proof closely follows that of Lemma A3 and is omitted for brevity.

Following the same steps in the proof of Proposition 2, we can show that for an arbitrary

tuple (vπH , v
π
L, µ

π) that satisfies (3), the expected winner’s effort from the contest is maximized

by (δ, γ) = (1, CC), (δ, γ) = (1, DD), or (δ, γ) =
(

1
µπ
, DC

)
. The first two contest schemes

generate an expected winner’s effort of 2
3
v̄, while the third one generates an expected winner’s

effort of
µπvπH(5−µπ)

6
. The optimization problem under γ = DC is

max
vπL,v

π
H ,µ

π

µπvπH(5− µπ)

6
s.t. (3).

It can be verified that for an arbitrary µπ, suppose that
∑K

`=k+1 µ` < µπ ≤
∑K

`=k µ` for

some k, then the largest vπH satisfying (3) is given by

[µπ − Pr(v > vk)]vk + Pr(v > vk)E[v|v > vk]

µπ
.

So the optimization problem becomes

max
µπ

W (µπ) :=

{
[µπ − Pr(v > vk)]vk + Pr(v > vk)E[v|v > vk]

}
(5− µπ)

6
,
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where k satisfies
∑K

`=k+1 µ` < µπ ≤
∑K

`=k µ`. For a fixed k, W (µπ) is quadratic in µπ and

the axis of symmetry is

µ∗(k) := 3−
∑k

`=1 µ`
2

−
∑K

`=k+1 µ`v`

2vk
,

which increases with k. Note that
∑K

`=k+1 µ` and
∑K

`=k µ` both decrease with k. Let k∗ :=

min
{
k : µ∗(k) ≥

∑K
`=k+1 µ`

}
. Then for all k > k∗, µ∗(k) ≥ µ∗(k∗) ≥

∑K
`=k∗+1 µ` ≥

∑K
`=k µ`.

Therefore, W (µπ) increases with µπ ≤
∑K

`=k∗+1 µ`. Meanwhile, for all k < k∗, µ∗(k) <∑K
`=k+1 µ`. So W (µπ) decreases with µπ >

∑K
`=k∗ µ`. Finally, it is easy to see that for∑K

`=k∗+1 µ` < µπ ≤
∑K

`=k∗ µ`, W (µπ) increases with µπ ≤ min
{∑K

`=k∗ µ`, µ
∗(k∗)

}
and

decreases otherwise.

To sum up, W (µπ) is maximized at µπ = min
{∑K

`=k∗ µ`, µ
∗(k∗)

}
. In the case of µ∗(1) ≥

1, which is equivalent to v̄/v1 ≤ 4, W (µπ) is maximized at µπ = 1. The maximized value

is 2
3
v̄, so (δ, γ) = (1, CC) and (δ, γ) = (1, DD) are optimal. In the case of µ∗(1) < 1, the

maximized value W (µπ) > W (1) = 2
3
v̄, so γ = DC is optimal. Finally, it is straightforward

to verify the desired distribution of posterior expectations can be induced by the signal

structure described in the proposition.
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Appendix C General Information Structure

This appendix concerns the case where the designer can freely choose the information

structure. We show that binary signals are optimal for maximizing the expected winner’s

effort. We assume c = 1 without loss of generality and focus on the γ = DC case.

Fix δ ∈ (0,∞). We first characterize the equilibrium under an arbitrary information

structure π(s|v). Suppose that the corresponding posterior belief is given by〈
(v1, . . . , vN), (µ1, . . . , µN)

〉
,

where vn := E(v|sn) and µn := Pr(sn) > 0. We order the signals such that the following is

satisfied,

vL ≤ v1 < · · · < vN ≤ vH ,
N∑
n=1

µn = 1, and
N∑
n=1

µnvn = v̄.

Proposition A3 Given the posterior
〈
(v1, . . . , vN), (µ1, . . . , µN)

〉
and γ = DC, the equilib-

rium of the contest is described as follows.

(i) Suppose that δ < 1. Contestant 1, upon receiving signal sn, mixes uniformly over

the interval
[
δ
∑n−1

k=1 µkvk, δ
∑n

k=1 µkvk

]
. Contestant 2 exerts 0 effort with probability

1− δ, and mixes over the interval
[∑n−1

k=1 µkvk,
∑n

k=1 µkvk

]
with density δ

vn
for n ∈

{1, . . . , N}.

(ii) Suppose that δ ≥ 1. Further, suppose that 1∑N
k=n0

µk
≤ δ < 1∑N

k=n0+1 µk
for some

n0 ∈ {1, . . . , N}. Contestant 1, upon receiving a signal from {s1, . . . , sn0−1}, ex-

erts 0 effort for sure; upon receiving signal sn0, he exerts 0 effort with probability

1− 1
δµn0

(
1− δ

∑N
k=n0+1 µk

)
, and mixes over the interval

[
0, vn0

(
1− δ

∑N
k=n0+1 µk

)]
with density 1

δµn0vn0
; upon receiving signal sn ∈ {sn0+1, . . . , sN}, he mixes uniformly

over the interval[
vn0

(
1− δ

∑N
k=n0+1 µk

)
+ δ

∑n−1
k=n0+1 µkvk, vn0

(
1− δ

∑N
k=n0+1 µk

)
+ δ

∑n
k=n0+1 µkvk

]
.

Contestant 2 mixes over the interval

[
0,

vn0
δ

(
1− δ

∑N
k=n0+1 µk

)]
with density δ

vn0
and

the interval[
vn0
δ

(
1− δ

∑N
k=n0+1 µk

)
+
∑n−1

k=n0+1 µkvk,
vn0
δ

(
1− δ

∑N
k=n0+1 µk

)
+
∑n

k=n0+1 µkvk

]
with

density δ
vn

for n ∈ {n0 + 1, . . . , N}.

Next, we show that a binary signal space is optimal. In particular, suppose that N ≥ 3,

we show that there exists a binary state information structure that performs weakly better

than π(s|v).

A12



Case (i): δ ≤ 1
µN−1+µN

. In this case, contestant 1 mixes uniformly if he receives signal

sN−1 or sN . We denote by x̃ the left endpoint of the interval contestant 1 mixes on when the

signal is sN−1. That is, contestant 1 mixes over [δx̃, δ(x̃ + µN−1vN−1)] if he receives signal

sN−1, and he mixes over [δ(x̃+µN−1vN−1), δ(x̃+µN−1vN−1 + µNvN)] if he receives signal sN .

The expected winner’s effort in equilibrium can be calculated as follows.

WE(π) = Pr(x1 < δx̃, x2 < x̃)E(x11{x1>δx2} + x21{x1<δx2}|x1 < δx̃, x2 < x̃)

+ Pr(x1 ≥ δx̃, x2 ≥ x̃)E(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃)

+ Pr(x1 < δx̃, x2 ≥ x̃)E(x2|x2 ≥ x̃) + Pr(x1 ≥ δx̃)E(x1|x1 ≥ δx̃).

Consider an alternative information structure π̂(s|v) with one less signal realization. In

particular, let the posterior induced by π̂(s|v) be
〈
(v1, . . . , vN−2, v̂), (µ1, . . . , µN−2, µ̂)

〉
, where

v̂ := µN−1vN−1+µNvN
µN−1+µN

and µ̂ := µN−1 + µN . Then the equilibrium strategy of contestant 1

is the same under the two information structures if he receives sn ∈ {s1, . . . , sN−2}, or

equivalently, x1 < δx̃. Contestant 2’s equilibrium effort distribution is also the same under

the two information structures conditional on x2 < x̃. Moreover,

Pr(x1 < δx̃) = P̂r(x1 < δx̃) and Pr(x2 < x̃) = P̂r(x2 < x̃),

where P̂r represents probability under information structure π̂(s|v). Therefore, to compare

the two information structures, it suffices to focus on the case where either x1 ≥ δx̃ or x2 ≥ x̃

(or both).

To show that WE(π) < WE(π̂), it suffices to prove that

E(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃) < Ê(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃).

In fact, we have that

E(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃)

=
1

δv2
N−1(µN−1 + µN)2

[ ∫ δ(x̃+µN−1vN−1)

δx̃

dx1

∫ x1/δ

x̃

x1dx2

+

∫ δ(x̃+µN−1vN−1)

δx̃

dx1

∫ x̃+µN−1vN−1

x1/δ

x2dx2

]
+

1

δv2
N(µN−1 + µN)2

[ ∫ δ(x̃+µN−1vN−1+µNvN )

δ(x̃+µN−1vN−1)

dx1

∫ x1/δ

x̃+µN−1vN−1

x1dx2

+

∫ δ(x̃+µN−1vN−1+µNvN )

δ(x̃+µN−1vN−1)

dx1

∫ x̃+µN−1vN−1+µNvN

x1/δ

x2dx2

]
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+
µN−1µN

(µN−1 + µN)2
(1 + δ)

2x̃+ 2µN−1vN−1 + µNvN
2

=
(1 + δ)[(2µ3

N−1 + 6µ2
N−1µN + 3µN−1µ

2
N)vN−1 + (3µN−1µ

2
N + 2µ3

N)vN + 3c2(µN−1 + µN)2x̃]

6c2(µN−1 + µN)2

and

Ê(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃)

=
1

δ(µN−1vN−1 + µNvN)2

[ ∫ δ(x̃+µN−1vN−1+µNvN )

δx̃

dx1

∫ x1/δ

x̃

x1dx2

+

∫ δ(x̃+µN−1vN−1+µNvN )

δx̃

dx1

∫ x̃+µN−1vN−1+µNvN

x1/δ

x2dx2

]
=

(1 + δ)(2µN−1vN−1 + 2µNvN + 3x̃)

6
.

Simple algebra yields that

Ê(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃)− E(x11{x1>δx2} + x21{x1<δx2}|x1 ≥ δx̃, x2 ≥ x̃)

=
(1 + δ)µN−1µN(2µN−1 + µN)(vN − vN−1)

6(µN−1 + µN)2
> 0.

By applying the procedure (pooling the highest two signals as long as 1
µN−1+µN

≥ δ)

repeatedly, we can either (i) reduce the number of signal realizations to be less than or equal

to 2, or (ii) proceed to the next case.

Case (ii): 1
µN−1+µN

< δ < 1
µN

. In this case, only type-sN−1 and type-sN contestant 1 is

active in equilibrium. The expected winner’s effort is calculated as follows.

WE(π) =
(1 + δ)

[
δ2µ2

N(3− δµN)(vN − vN−1) + 2vN−1

]
6δ2

.

It is worth pointing out that WE(π) is independent of µN−1 and is increasing in µN ∈
(
0, 1

δ

)
.

Consider an alternative information structure π′(s|v) generated by the following change

to π(s|v): when sN−1 is drawn according to π(s|v), π′(s|v) changes the signal to s1 with

probability
µN−1−( 1

δ
−µN)

µN−1
and sends sN−1 with the complementary probability; when other
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signals are drawn according to π(s|v), π′(s|v) sends the same signal. Specifically,

π′(s1|v) = π(s1|v) + π(sN−1|v)
µN−1 −

(
1
δ
− µN

)
µN−1

,

π′(sN−1|v) = π(sN−1|v)
1
δ
− µN
µN−1

, and

π′(sk|v) = π(sk|v), for k 6= 1, N − 1.

Since WE(π) is independent of µN−1, and π′(s|v) simply reduces this posterior without

changing vN , vN−1, or µN , we have that WE(π) = WE(π′). But by construction, 1
µ′N−1+µ′N

=

δ, which brings us back to Case (i), implying that the highest two signals should be pooled

together. Since we have a finite number of signals, eventually this procedure will reduce the

number of signals to two.

Case (iii): δ ≥ 1
µN

. In this case, only type-sN contestant 1 is active in equilibrium. The

information structure π(s|v) is equivalent to a binary state information structure with the

following posterior,

v̂1 =

∑N−1
k=1 µkvk∑N−1
k=1 µk

, v̂2 = vN , and µ̂1 =
N−1∑
k=1

µk, µ̃2 = µN .

In conclusion, π(s|v) is weakly outperformed by a binary state information structure.
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